Digitizing stop motion animation has been my Engineering Doctorate project for the past three years. The aim was to simplify the workload for artists and offer them tools to bring their handmade creations in a 3D environment. The following video shows a simple pipeline for digitizing characters from the game Clay Jam, by Fat Pebble. This is now published work and open for film and game companies to use.
Publications
[1] Anamaria Ciucanu, Naval Bhandari, Xiaokun Wu, Shridhar Ravikumar, Yong-Liang Yang, Darren Cosker. 2018. E-StopMotion: Digitizing Stop Motion for Enhanced Animation and Games. In MIG 18: Motion, Interaction and Games (MIG 18), November 8-10, 2018, Limassol, Cyprus. ACM, New York, USA, 11 pages. [PDF]

Hellidropter says Hi!
Abstract
Nonrigid registration has made great progress in recent years, taking more steps towards matching characters that have undergone non-isometric deformations. The state-of-the-art is, however,still linked more to elastic or locally shape preserving matching, leaving room for improvement in the plastic deformation area.
When the local and global shape of a character changes significantly from pose to pose, methods that rely on shape analysis or proximity measures fail to give satisfying results.
We argue that by using information about the material the models are made from and the general deformation path, we can enhance the matches significantly. Hence, by addressing mainly plasticine characters, we attempt to reverse engineer the deformations they undergo in the hands of an artist.
We propose a mainly extrinsic technique, which makes use of the physical properties we can control (stiffness, volume) to give a realistic match. Moreover, we show that this approach overcomes limitations from previous related methods by generating physically plausible intermediate poses, which can be used further in the animation pipeline.
Project Links
You can follow the research progress on Vimeo and GitHub. This is a work in progress project, in collaboration with the Centre for Digital Entertainment at University of Bath and Fat Pebble, under the supervision of Darren Cosker.